Что-то нестандартное. Попробую помочь.
Итак
200 - производительность труда 1 бригады
(200-х) - второй
(200+6х) - третьей
Р - вся работа.
Далее
200+(200-х) = (400-х) -произв. труда 1 и 2 бригад вместе.
200+(200-х)+(200+6х) = (600 + 5х) - произв труда всех 3 бригад вместе.
1+2 сделали Р/6 работы, затратили на это
Р/6(400-х) - время на 1/6 работы
1+2+3 сделали 5Р/6 работы, затратив на это
5Р/6(600+5х) - время на 5/6 работы.
Общее время (Р/6)*(1/(400-х)+ 5/(600+5х)) - общее время, мин которого нужно найти.
То есть нужно найти мин функции
1/(400-х) + 5/(600+5х) = (600+5х+2000-5х)/((400-х)(600+5х))=2600/(400-х)(600+5х)
Так как числитель - положительная константа, мин функции достигается при макс знаменателя.
Итак, задача свелась к нахождению макс квадратного трехчлена
(400-х)(600+5х)
Это совсем просто, потому что он достигается при полусумме его корней.
х1=400 х2=-120, значит хмин=(400-120)/2 = 140.
Вот, в принципе и всё, потому что в задаче нужно найти ТОЛЬКО это значение.
Если есть желание, можешь найти и всё остальное.
PS. Перепроверь условие и арифметику, мне не нравится этот ответ, потому что уж очень неравнозначные производительности труда получаются, а именно
1 - 200
2 - 60
3 - 1300
Так в жизни не бывает, а может, я где-то ошибся. Бывает...
1. х:(2 6/7)=8,2:(1 2/3)
х×7/20=82/10×3/5
х=(82×3×20)/10×5×7=1008/70
2.
А)84-(44+28)=(84-44)+28=40+28=68 Б)94-(44+26)=(94-44)+26=50+26=76 В)826-(231+269)=826-500=326 Г)728-(328-179)=(728-328)-179=400-179=221 Д)(83-23)-29=60-29=31 Е)83-(21-29)=83-50=43 Ж)(236-136)-92=100-92=8 З)236-(108-92)=236-16=220
(если так не понятно я отвечала с планшета не могу с новой строчки начинать)
4десяток тысяч,3 сотни единиц, 9десятков единиц, 7единиц / 2един миллионов 0 сот тыс 0 десять тыс 0един тыс 0 сот единиц 0десят един 9 единиц