Задачи решаются по классической формуле вероятности:
P = m/n, где
m — число благоприятствующих исходов
n — число всевозможных исходов
n = 6·6 = 36. А вот благоприятствующие исходы m для каждого условия нужно считать
а) Событие A = {сумма выпавших очков равна 7}
m = {(1, 6); (2, 5); (3, 4); (6, 1); (5, 2); (4, 3)} = 6 способов
Тогда: P = m/n = 6/36 = 1/6
б) Событие C = {сумма выпавших очков равна 8, а разность 4}
m = {(2, 6); (3, 5); (4, 4); (6, 2); (5, 3)} = 2 способа
Тогда: P = m/n = 2/36 = 1/18
в) Событие D = {сумма выпавших очков равна 8, если известно, что их разность равна 4}
Событие A = {сумма выпавших очков равна 8}
Событие B = {разность выпавших очков равна 4}
По формуле условной вероятности: P(A|B) = P(A·B) / P(B), то есть:
P(B): m = {(1, 5); (2, 6); (5, 1); (6, 2)} = 4 способа ⇒ P(B) = 4/36 = 1/9
P(A·B) = {сумма выпавших очков равна 8 И их разность равна 4}: {(2, 6); (6, 2)} = 2 способа ⇒ P(A·B) = 2/36 = 1/18
Тогда: P(D) = P(A·B) / P(B) = (1/18)·9 = 1/2
г) Событие E = {сумма выпавших очков равна 5, а произведение 4}
m = {(1, 4); (2, 3); (3, 2); (4, 1)} = 2 способа
<span>Тогда: P(E) = 2/36 = 1/18</span>
1) 3,2 2)102,816 |20,16 3) 5,10
* 6,3 - 10080 |5,1 +3,84
_____ _______ _____
96 2016 8,94
+192 - 2016
_____ ________
20,16 0
А+50 равно
1) 50-30 равно 20
2) 200+20 равно 220
1)175-57=118. 2)118*106=12508. 3)26*375=9750. 4)9750+12508=22258. 5)3195:15=213. 6)213*24=5112. 7)5112-22258= -17146
(1+1+1)!=6
! - факториал.
1+1+1 = 3
факториал трех равен: 1*2*3 равен шести.