1)15900:100=159,2)5010-159=4851,3)4851+786=5637
Cогласно классическому определению, вероятностью P события A называют отношение числа элементарных исходов испытания nA, благоприятствующих наступлению события, к числу всех возможных элементарных исходов испытания n, то есть P(A) = nA\n. Для решения данной задачи необходимо вспомнить одно из правил комбинаторики, а именно: “Комбинации, состоящие из одной и той же совокупности n различных элементов и различающиеся только порядком их расположения, называются перестановками. Число перестановок из n элементов обозначается Pn и вычисляется по формуле Pn = 1*2*3*...*n= n!”.
<span> Исходя из условий задачи, а также предположив, что все исходы равновероятны (студенты могут сесть куда угодно), определим количество всех возможных элементарных исходов (вариантов рассаживания студентов), исходя из наличия 12-ти первых мест одного ряда кинотеатра как n = P12 = 1*2*3*...*12 = 12!
Для дальнейших рассуждений лично мне приятнее будет предположить, что М и Н — это хорошие друзья Миша и Наташа, и они, взявшись за руки, садятся рядом :-). В этом случае выбор мест ограничится для них 11-ю вариантами, и тогда P11 = 1*2*3*...*11 = 11!Здесь надо учесть ещё и то, что Миша и Наташа могут взяться за руки двумя способами: М-H и Н-М, а значит, число вариантов удваивается - nA = 2*7!
Итого, математически: общее число исходов n = 12!, число благоприятных исходов nA = 2*11!, вероятность равна P(A) = nA\n = 2*11!\12! = 2*39916800\479001600 = 0,167</span>
Действовать будем так: найдем производную функции по х и по у, приравняем их к 0, составим систему и найдем решение. Это решение будет стационарной точкой
стационарная точка - (0,4;2)
Далее необходимо определить характер этой самой точки - максимум это, или минимум.
Для этого составим матрицу из вторых производных и проверим ее главные миноры. Так как у нас функция 2 переменных, то матрица будет размерности 2*2, следовательно, главные миноры - это вторая производная по хх, и определитель всей матрицы. Если определитель матрицы положительный, то экстремум существует и его характер проверяется по знаку второй производной по хх, если отрицательный, то экстремума нет.
Как видно, определитель матрицы меньше 0, поэтому глобального экстремума нет