<em><span>1.Уравнение:
б)2,65*(х-3,06)=4,24
а)у+4 7\10=5 8\15
</span></em>
<em><span>4. 1/6 + 1/9 + 1/4
</span></em>
4•2/11=8/11
9•5/63=5/7
16•25/48=25/3=8 1/3
3/4•11/6=11/8=1 3/8
17/30•26/51=13/45
15/16•8/25=3/10
(11/35 •5/9)•1 4/5=11/35*5/9*9/5=11/35
(13/78•3/5)•1 2/3=13/78*3/5*5/3=13/78
Обратная теорема, теорема, условием которой служит заключение исходной (прямой) теоремы, а заключением — условие. Обратной к О. т. будет исходная (прямая) теорема. Таким образом, прямая и О. т. взаимно обратны. Например, теоремы: "если два угла треугольника равны, то их биссектрисы равны" и "если две биссектрисы треугольника равны, то соответствующие им углы равны" — являются обратными друг другу. Из справедливости какой-нибудь теоремы, вообще говоря, не следует справедливость обратной к ней теоремы. Например, теорема: "если число делится на 6, то оно делится на 3" — верна, а О. т. : "если число делится на 3, то оно делится на 6" — неверна. Даже если О. т. верна, для её доказательства могут оказаться недостаточными средства, используемые при доказательстве прямой теоремы. Например, в евклидовой геометрии верны как теорема "две прямые на плоскости, имеющие общий перпендикуляр, не пересекаются", так и обратная к ней теорема "две непересекающиеся прямые на плоскости имеют общий перпендикуляр". Однако вторая (обратная) теорема основывается на евклидовой аксиоме параллельных, тогда как для доказательства первой эта аксиома не нужна. В Лобачевского геометрии вторая просто неверна, тогда как первая остаётся в силе. О. т. равносильна теореме, противоположной к прямой, т. е. теореме, в которой условие и заключение прямой теоремы заменены их отрицаниями. Поэтому прямая теорема равносильна теореме, противоположной к обратной, т. е. теореме, утверждающей, что если неверно заключение прямой теоремы, то неверно и её условие. Известный способ "доказательства от противного" как раз и представляет собой замену доказательства прямой теоремы доказательством теоремы, противоположной к обратной. Справедливость обеих взаимно обратных теорем означает, что выполнение условия любой из них не только достаточно, но и необходимо для справедливости заключения .
Обратная теорема Пифагора:
<span> Для всякой тройки положительных чисел a, b и c, такой, что a^2 + b^2 = c^2, существует прямоугольный треугольник с катетами a и b и гипотенузой c.</span>