40-24*(40,6:29)= 40-24*1,4=40-33,6=6,4
Задачи решаются по классической формуле вероятности:
P = m/n, где
m — число благоприятствующих исходов
n — число всевозможных исходов
n = 6·6 = 36. А вот благоприятствующие исходы m для каждого условия нужно считать
а) Событие A = {сумма выпавших очков равна 7}
m = {(1, 6); (2, 5); (3, 4); (6, 1); (5, 2); (4, 3)} = 6 способов
Тогда: P = m/n = 6/36 = 1/6
б) Событие C = {сумма выпавших очков равна 8, а разность 4}
m = {(2, 6); (3, 5); (4, 4); (6, 2); (5, 3)} = 2 способа
Тогда: P = m/n = 2/36 = 1/18
в) Событие D = {сумма выпавших очков равна 8, если известно, что их разность равна 4}
Событие A = {сумма выпавших очков равна 8}
Событие B = {разность выпавших очков равна 4}
По формуле условной вероятности: P(A|B) = P(A·B) / P(B), то есть:
P(B): m = {(1, 5); (2, 6); (5, 1); (6, 2)} = 4 способа ⇒ P(B) = 4/36 = 1/9
P(A·B) = {сумма выпавших очков равна 8 И их разность равна 4}: {(2, 6); (6, 2)} = 2 способа ⇒ P(A·B) = 2/36 = 1/18
Тогда: P(D) = P(A·B) / P(B) = (1/18)·9 = 1/2
г) Событие E = {сумма выпавших очков равна 5, а произведение 4}
m = {(1, 4); (2, 3); (3, 2); (4, 1)} = 2 способа
<span>Тогда: P(E) = 2/36 = 1/18</span>
2 5/18-5/6=2 5/18-15/18=1 23/18-15/18=1 8/18=1 4/9
3 2/5-11/15=3 6/15-11/15=2 21/15-11/15=2 10/15=2 2/3
Не знаю что за задачи такие сом в шкали ниучилься
150 минут=2 часа, 30 минут.