Пусть х см - высота прямоугольника,
тогда 2х см - длина прямоугольника.
х + 2х = 60
3х = 60
х = 60 : 3
х = 20 (см) - высота.
2 * 20 = 40 (см) - длина.
20 : 4 = 5 (см) - ширина.
V = a * b * c
V = 20 * 40 * 5 = 4000 (cм³)
Ответ: 4000 см³.
Следующее число будет 27 , умножая на 3 каждое число
1)
а(а^2+2а+1)=а(а+1)^2
5а+5b-ay-by=5(a+b)-y(a+b)=(5-y)(a+b)
8a-8b-3b^2+3ab=8(a-b)-3b(b-a)
a^3b-2a^2b^2+ab^3=ab(a^2-2ab+b^2)=ab(a-b)^2
a-5b+a^2-5ab=a(1+a)-5b(1+a)=(a-5b)(1+a)
a^4-a^2+6a+6=a^2(a^2-1)+6(a+1)
2)
x^2-9-2ax-6a=(x-3)^2-2a(x-3)=(x-3)(x-3-2a)
x^3-8=
Посмотрим...авсд квадрат если ав=вс=сд=да и диагонали равны - ас=вд ав=корень квадратный из ((4-0)*(4-0)+(2-4)(2-4)) = корень из 20 вс= корень кв из ((2-4)(2-4)+(-2-2)*(-2-2)) = корень из 20 аналогично находим что сд=да=корень из 20 Теперь ас= корень из (( (2-0)*(2-0)+(-2-4)*(-2-4) = корень из 40 а вд= корень из ( (-2-4)*(-2-4)+(0-2)*(0-2) = корень из 40 в итоге если бы мы доказали что все стороны равны - то мы бы получили ромб - а доказав равенство диагоналей - подтвердили вариант с квадратом-так как у квадрата по мимо равных сторон диагонали равны - в отличии от ромба.