Применены свойства логарифмов
Tg 5x = sqrt(3)
5x = arctg sqrt((3) + Pi*k, k прин Z
5x = Pi/3 + Pi*k, k прин Z
x = Pi/13 + Pi*k/5, k прин Z
==============
2cos(x + Pi/4) = sqrt(2)
cos(x + Pi/4) = sqrt(2)/2
x + Pi/4 = +- arccos(sqrt(2)/2) + 2Pi*k, k прин Z
x + PI/4 = +- Pi/4 + 2Pi*k, k прин Z
x = +- Pi/4 - Pi/4 + 2Pi*k, k прин Z
==============
8sin^2(x) + 4cos^2(x) - 7 = 0
8sin^2(x) + 4(1 - sin^2(x)) - 7 = 0
8sin^2(x) + 4 - 4sin^2(x) - 7 = 0
4sin^2(x) - 3 = 0
4sin^2(x) = 3
sin^2(x) = 3/4
1. sinx = sqrt(3)/2
x = (-1)^k arcsin(sqrt(3)/2) + Pik, k прин Z
x = (-1)^k Pi/3 + Pik, k прин Z
2. sinx = -sqrt(3/2)
x = (-1)^k arcsin(-sqrt(3)/2) + Pik, k прин Z
x = (-1)^(k+1) arcsin(sqrt(3)/2) + Pik, k прин Z
x = (-1)^(k+1) Pi/3 + Pik, k прин Z
Если 40% это 18 км
То 80% это 36 км
Ещё 18:2=9 км это 20%
Ответ: 45 км
А)Модуль которых меньше 10
в целых числах -9,-8,-7,....7,8,9
в общем виде ∈(-10;10)
б)Модуль которых больше 3 и меньше 5,6.
в целых числах -5,-4,4,5
в общем виде ∈(-5,6;-3)U(3;5,6)
Можно провести только один перпендыкуляр к стороне BC