Это формула: введение вспомогательного угла. Выводится следующим образом:
Если есть выражение: asinα+bcosβ, то за скобку выносится выражение:
√(a²+b²)
В данном случае: a=1 и b=1, тогда за скобку выносим √(1²+1²)=√2
Зная, что cos(π/4)=1/√2 и sin(π/4)=1/√2
Теперь сворачиваем это выражение по формуле косинуса разности:
cosα*cosβ+sinα*sinβ =cos(α-β)
И наконец, так как косинус - четная функция, то выражение в скобках можно домножить на -1, то есть
Сокращенное доказательство:
80-18=68
2:7+0,06=3,56
(хз 2:7 вроде бы не делится)
Так как 3х-х=2х, то 2х=12, а х=6
Так как х+8х=9х, то 9х=72,а х=8