Из условия следует, что сумма любых 6 чисел из данных 100 делится на 6. Докажем, что все эти числа имеют одинаковый остаток при делении на 6.
Пусть это не так и существуют два числа x и y, дающие разные остатки при делении на 6. Выберем из оставшихся 98 чисел произвольные 5 - a,b,c,d,e. Рассмотрим числа M=a+b+c+d+e+x и N=a+b+c+d+e+y. Легко видеть, что эти числа имеют разные остатки при делении на 6, поскольку числа x и y имеют разные остатки. Следовательно, одно из этих чисел не делится на 6.
Мы получили противоречие, а значит, у всех 100 чисел остаток при делении на 6 одинаковый. Поскольку все числа натуральны, первое из них не меньше 1, второе не меньше 1+6=7, и так далее, последнее не меньше 1+6*99=595.
Ответ: 595.
28 - XXVIII
9 - IX
2002 - <span>MMII</span>
А) (34+51): 17=85: 17=5
Г) (133+228): 19=361: 19=19
Б) (3434+68): 34=3502: 34=103
Д) (952+3528): 56=4480: 56=80
В) 156: 26+364: 26=6+14=20
Е) 1107: 123+1353: 123=9+11=20