(60мин*7+20)*6+(60мин*8+15)*2=2640мин+990=3630 мин
Квадратное уравнение имеет один корень, если дискриминант равен 0. Вычислим D=b^2-4ac=(4(a+1))^2-4a(-a+6)=16(a^2+2a+1)+4a^2--24a =16a^2+32a+16+4a^2-24a=<span>20a^2+8a+16.
</span>D=0:
<span>20a^2+8a+16=0
</span>5a^2+2a+5=0
решим полученное уравнение и найдем а.
Так как дискриминант равен -76<0, уравнение не имеет решений.
Вывод: ни при каких значениях а исходное квадратное уравнение: <span>ax2−4(a+1)x−a+6=0 не может иметь единственного корня.</span>
<em>48 страниц-32 %</em>
<em> всего стр-100%</em>
<em>48*100:32=150 страниц в книге</em>