Увы боюсь сложением решить не получится(ибо без количества серий).
1)571/200=2.855
2)221+345=566
3)566-2.855=563.145
<span>Находите площадь пруда и умножаете на 4кубометра</span>
Решение
Основное соображение: после каждого хода количество кусков увеличивается ровно на 1.
Сначала был один кусок. В конце игры, когда нельзя сделать ни одного хода, шоколадка разломана на маленькие дольки. А их 48! Таким образом, игра будет продолжаться ровно 47 ходов. Последний, 47-й ход (так же, как и все другие ходы с нечетными номерами) сделает первый игрок. Поэтому он в этой игре побеждает, причем независимо от того, как будет играть.
<span>Ответ: 16
Обозначим треугольник ABC: AB=13 см, BC=15см, AC=14см.
KA - перпендикуляр к плоскости треугольника ABC.
По условию задачи необходимо найти длину KA.
В треугольнике ABC проведем перпендикуляр AH.
Рассмотрим треугольник ABH. Он является прямоугольным (угол AHB равен 90 градусов). По теореме Пифагора
(AB)^2 = (AH)^2 + (BH)^2
169 = (AH)^2 + (BH)^2
(BH)^2 = 169 - (AH)^2 (*)
Рассмотрим AC. AC = 14 см.
AC = AH + HC
HC = AC - AH
HC = 14 - AH
Рассмотрим треугольник AHC. Он является прямоугольным (угол BHC равен 90 градусов). По теореме Пифагора
(BC)^2 = (BH)^2 + (HC)^2
225 = (BH)^2 + (14-AH)^2
(BH)^2 = 225 - (14-AH)^2 (**)
Из (*) и (**)
169 - (AH)^2 = 225 - (14-AH)^2
169 - (AH)^2 = 225 - 196 + 28AH - (AH)^2
28AH = 140
AH = 5
(BH)^2 = 169 - (AH)^2 = 169 - 25 = 144
BH = 12
KH - наклонная
BH - проекция наклонной KH на плоскость ABC
BH и AC перпендикулярны (по построению)
По теореме о трех перпендикулярах KH и AC перпендикулярны.
Следовательно KH - расстояние от точки K до прямой AC и KH=20.
Рассмотрим треугольник KBH. Он является перпендикулярным (угол KBH равен 90 градусов). По теореме Пифагора
(KH)^2 = (BK)^2 + (BH)^2
400 = (BK)^2 + 144
(BK)^2 = 256
BK = 16</span>