Для любого множества из n неотрицательных целых чисел утверждается, что среднее арифметическое этих чисел больше либо равно среднему геометрическому этих чисел.
A = {a1, a2, ..., an}, ai >= 0,
(a1 + a2 + ... + an) / n >= (a1 * a2 * ... * an) ^ (1 / n)
Если сложение дробей определено таким правилом (a/b + c/d = (a + c)/(b + d)), то умножение тоже может быть определено таким же "придуманным" правилом. То есть варианты могут быть разные, все зависит от фантазии автора.
Вот мой вариант. Если вспомнить определение умножения (умножение - это многократное сложение), то произведение a/b * c/d должно быть определено как сумма дроби a/b в c/d раз, то есть, например для a/b + a/b = (a + а)/(b + b) = a/b. То же самое будет и при трехкратном сложении и т.д. Значит (a/b) * (c/d) = a/b. Абсурд конечно, но так получилось.
Если тридцатизначное число содержит в себе хотя бы одну цифру ноль, то можно вычеркнуть прочие 29 цифр, и тогда этот самый оставшийся в итоге ноль поделится без остатка на любое число, в т.ч. и на указанное в условии число 101.
Если нулей в тридцатизначном числе не содержится, то одна из цифр данного числа будет повторяться в нем как минимум четырежды. В этом случае оставляем четыре одинаковые цифры, вычеркивая все прочие. Получившееся число вида nnnn, где 0 < n ≤ 9, удовлетворят необходимому и достаточному условию делимости на 101.
И действительно, в нашем случае |nn - nn| = 0, стало быть, четырехзначное число nnnn без остатка делится на 101.
Берешь калькулятор и делишь 8 на 11 получаешь что-то вроде 0,72727272.
Также делишь 14 на 17, получится где-то 0,82352941. Тут уж невооруженным глазом видно какое число больше другого. Т.е. надо перевести натуральные дроби в десятичные, всего и делов то...
Стандартным образом, по определению. Открываете учебник математики и читаете: "Угловой коэффициент касательной к графику любой функции равен значению первой производной этой функции, вычисленной в точке касания".