66:22=3 |
|=>66:22=111:3
111:37=3 |
(x²-8x+16) /(x²-3x-10) >0
xстепень2-8x+16=0
D= (-8)² - 4*16 = 64 -64 = 0
D=0 - один корень уравнения
х1= 8/(2*1) =8/2 =4
х² -3х -10=0
D= (-3)² - 4*1*(-10) = 9 + 40 =49 = 7степень2
D>0 - два корня уравнения
х1= ( 3- 7) /(2*1) = -4/2 =-2
х2= (3+7) /2 = 10/2 = 5
знаки на интервалах
-2 > x> 5 х∈ (-бесконеч; -2) ∪ (5; +бесконеч)
Решение: 1)у=sinx,x принадлежит [o;п] f'(x)=cosx cosx=0 x=п/2+pin,n принадлежит z найдем еще 1 точку которая принадлежит нашему отрезку если n=0 то x=П/2 принадлежит [0;п] 2)у=x^3-3x,x<0 f'(x)=3x^2-3 3x^2-3=0 3x^2=3 x^2=1 x=1 не соответствует усл. задач т. к. x<0; x=-1 В итоге у меня получилось монотонность: функция возрастает [-1;0],[п; п/2] функция убывает [o;п], [п/2;+бесконечности точки экстремума Xmax=0 тогда Ymax=3*0^2-3=-3 Xmax=п/2 тогда Ymax=1 Xmin=п тогда Ymin=0 Вот и получись точки экстремума Ymax=1 Ymin=-3.
1.Луч бесконечный, а премая имеет начало и конец.
2.Когда расстояние концов от 1 и 2 прямой одинакова.